800165

ಅರ್ಹತಾ / ಸ್ಪರ್ಧಾತ್ಮಕ ಪರೀಕ್ಷೆ – 2024 ಪತ್ರಿಕೆ–2 ಒಟ್ಟು ಪ್ರಶ್ನೆಗಳ ಸಂಖ್ಯೆ : 100 ಗರಿಷ್ಠ ಅಂಕಗಳು : 200 ನಿಮ್ಮ ನೋಂದಣಿ ಸಂಖ್ಯೆಯನ್ನು ನಮೂಂದಿಸಿ ವಿಷಯ: ಪರಿಸರ ವಿಜ್ಞಾನಗಳು

ವರ್ಷನ್ ಕೋಡ್

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

ಮಾಡಿ : ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯನ್ನು ನಿಮಗೆ ಬೆ. 9.55 ಕ್ಕೆ ಕೊಡುತ್ತಾರೆ.

2. ನೋಂದಣಿ ಸಂಖ್ಯೆಯನ್ನು ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಬರೆದು ಅದಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ವೃತ್ತಗಳನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿದ್ದೀರೆಂದು ಖಾತ್ರಿಪಡಿಸಿಕೊಳ್ಳತಕ್ಕದ್ದು.

3. ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯ ವರ್ಷನ್ ಕೋಡ್ ಅನ್ನು ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಬರೆದು ಅದಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ವೃತ್ತಗಳನ್ನು ಸಂಪೂರ್ಣವಾಗಿ

ತುಂಬಬೇಕು.

4. ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯ ವರ್ಷನ್ ಕೋಡ್ ಮತ್ತು ಕ್ರಮ ಸಂಖ್ಯೆಯನ್ನು ನಾಮಿನಲ್ ರೋಲ್ ನಲ್ಲಿ ತಪ್ಪಿಲ್ಲದೆ ಬರೆಯಬೇಕು.

5. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯ ಕೆಳಭಾಗದ ನಿಗದಿತ ಜಾಗದಲ್ಲಿ ಕಡ್ಡಾಯವಾಗಿ ಸಹಿ ಮಾಡಬೇಕು.

ಮಾಡಬೇಡಿ :

 ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಮುದ್ರಿತವಾಗಿರುವ ಟೈಮಿಂಗ್ & ಮಾರ್ಕನ್ನು ತಿದ್ದಬಾರದು / ಹಾಳುಮಾಡಬಾರದು / ಅಳಿಸಬಾರದು. ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಮುಖ್ಯ ಸೂಚನೆಗಳು

1. ಪ್ರಶ್ನೆಗಳಲ್ಲಿ ಬಳಸಿರುವ signs and symbols ಗಳನ್ನು, ಬೇರೆ ರೀತಿಯಲ್ಲಿ ಹೇಳದ ಹೊರತು, ನಿಗದಿತ ಪಠ್ಯಪುಸ್ತಕದಲ್ಲಿನ ಅರ್ಥವನ್ನು ಪರಿಗಣಿಸಬೇಕು.ಪೇಕು.

2. ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಲ್ಲಿ ಒಟ್ಟು 100 ಪ್ರಶ್ನೆಗಳಿದ್ದು, ಪ್ರತಿ ಪ್ರಶ್ನೆಗೂ 4 ಬಹು ಆಯ್ಕೆ ಉತ್ತರಗಳು ಇರುತ್ತವೆ. ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ಕೊಟ್ಟಿರುವ ನಾಲ್ಕು

ಬಹು ಆಯ್ಕೆಯ ಉತ್ತರಗಳಲ್ಲಿ ಸರಿಯಾದ ಒಂದು ಉತ್ತರವನ್ನು ಆಯ್ಕೆ ಮಾಡಿ.

3. ಬೆಳಿಗ್ಗೆ 10.00 ಗಂಟೆಗೆ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಬಲಭಾಗದಲ್ಲಿರುವ ಸೀಲ್ ತೆಗೆದು ಈ ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಲ್ಲಿ ಯಾವುದೇ ಪುಟಗಳು ಮುದ್ರಿತವಾಗಿಲ್ಲದೇ ಇರುವುದು ಕಂಡು ಬಂದಲ್ಲಿ ಅಥವಾ ಹರಿದು ಹೋಗಿದ್ದಲ್ಲಿ ಅಥವಾ ಯಾವುದೇ ಅಕ್ಷರಗಳು ಬಿಟ್ಟುಹೋಗಿದ್ದಲ್ಲಿ ಪರೀಕ್ಷೆ ಪ್ರಾರಂಭವಾದ 5 ನಿಮಿಷಗಳೊಳಗೆ ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯನ್ನು ಬದಲಾಯಿಸಿಕೊಳ್ಳುವುದು. ನಂತರ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಉತ್ತರಿಸಲು ಪ್ರಾರಂಭಿಸುವುದು.

4. ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಲ್ಲಿನ ಪ್ರಶ್ನೆಗೆ ಅನುಗುಣವಾಗಿರುವ ಸರಿ ಉತ್ತರವನ್ನು ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಅದೇ ಕ್ರಮ ಸಂಖ್ಯೆಯ ಮುಂದೆ ನೀಡಿರುವ ಸಂಬಂಧಿಸಿದ ವೃತ್ತವನ್ನು ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ನಿಂದ ಸಂಪೂರ್ಣ ತುಂಬುವುದು.

	zi.	ರಿಯಾ	ದ ಕೃಷ	ಶ				ತಪ್ಪು ಕ	್ರಮಗಳ	9 M	RON	3 METI	HODS			
			METH		(%)	2	3	4	1	2	3	4	1			4
(1)		(3)	4	@		3	4	1		3	4	1	2	3	4

- 5. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯನ್ನು ಸ್ಕ್ಯಾನ್ ಮಾಡುವ ಸ್ಕ್ಯಾನರ್ ಬಹಳ ಸೂಕ್ಷ್ಮವಾಗಿದ್ದು ಸಣ್ಣ ಗುರುತನ್ನು ಸಹ ದಾಖಲಿಸುತ್ತದೆ. ಆದ್ದರಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯಲ್ಲಿ ಉತ್ತರಿಸುವಾಗ ಎಚ್ಚರಿಕೆ ವಹಿಸಿ.
- 6. ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಲ್ಲಿ ಕೊಟ್ಟಿರುವ ಖಾಲಿ ಜಾಗವನ್ನು ಕಚ್ಚಾ ಕೆಲಸಕ್ಕೆ ಉಪಯೋಗಿಸಿ. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯನ್ನು ಇದಕ್ಕೆ ಉಪಯೋಗಿಸಬೇಡಿ.
- 7. ಮಧ್ಯಾಹ್ನ 1.00 ಗಂಟೆಗೆ ಕೊನೆಯ ಬೆಲ್ಕೊನ್ ಆದ ನಂತರ ಉತ್ತರಿಸುವುದನ್ನು ನಿಲ್ಲಿಸಿ, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಪತ್ರಿಕೆಯನ್ನು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಯಥಾಸ್ಥಿತಿಯಲ್ಲಿ ನೀಡಿರಿ.
- 8. ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ಮೇಲ್ಭಾಗದ ಹಾಳೆಯನ್ನು ಪ್ರತ್ಯೇಕಿಸಿ (ಕಚೇರಿ ಪ್ರತಿ) ತಮ್ಮ ವಶದಲ್ಲಿ ಇಟ್ಟುಕೊಂಡು ಹಿಂಬದಿಯ ಯಥಾಪ್ರತಿಯನ್ನು (ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿ) ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಕೊಡುತ್ತಾರೆ.

9. ಎಲ್ಲಾ ಪ್ರಶ್ನೆಗಳಿಗೆ ಸಮಾನ ಅಂಕಗಳಿರುತ್ತವೆ.

10. ಯಾವುದೇ ರೀತಿಯ ಮೊಬೈಲ್ ಘೋನ್, ಕ್ಯಾಲ್ಕ್ಯುಲೇಟರ್ ಮತ್ತು ಇತರೆ ರೀತಿಯ ಎಲೆಕ್ಟ್ರಾನಿಕ್/ಕಮ್ಯುನಿಕೇಷನ್ ಸಾಧನಗಳು ಇತ್ಯಾದಿಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೇಂದ್ರದ ಆವರಣದೊಳಗೆ ತರುವುದನ್ನು ನಿಷೇಧಿಸಿದೆ.

1.		e species determining the amunity are called:	ability of large	number of other sp	pecies to persist in a					
	(1)	Indicator species	(2)	Keystone species						
	(3)	Dominant species	(4)	Endemic species						
2.	The composition of rhizospheric microorganisms are dependent on the soil :									
	A.	Texture								
	B.	Organic matter								
	C.	pH								
	D.	Elasticity								
	Sele	ect the correct answer using	the codes given b	elow:						
	(1)	Only A	(2)	Neither A nor B						
	(3)	A, B and C	(4)	A, B, C and D	×					
3.	Giv	en below are two statements	s, one is labelled a	as Assertion (A) and o	ther as Reason (R):					
		ertion (A): Chemosynthesis								
	Rea	son (R): In chemosynthesis,	some sulphur co	mpounds act as a sou	rce of energy.					
	(1)	Both (A) and (R) are correct	, and (R) is the co	orrect explanation of ((A).					
	(2)	Both (A) and (R) are correct	, but (R) is not th	ne correct explanation	of (A).					
		(A) is true, but (R) is false.								
	(4)	(A) is false, but (R) is true.								
4.	Crye	opreservation involves stora	age of cells from	embryos and shoot t	ips in liquid nitrogen					
	(1)	– 196°C	(2)	5°C						
	(3)	0°C	(4)	100°C						
5.		pecies, the population of whi low enough that it is in imm			becoming extinct but					
	(1)	Endangered species	(2)	Threatened species						
	(3)	Vulnerable species	(4)	Rare species						
			Space for Rough	Work						

6.		concept of biosphere reserve was launc	hed as	s a part of UNESCO's Ma	n and Biosphere					
	_	1972	(2)	1974						
	(1)		(4)	1971						
	(3)	1970								
7.	Whic	ch one of the following termite gut micr	obe co	ntributes to degradation (of cellulose ?					
	(1)	Citrobacter sp.	(2)	Trichonympha sp.						
	(3)	Enterococcus sp.	(4)	Enterobacter sp.						
8.	Give	n below are two statements, one is labo	elled a	s Assertion (A) and other	as Reason (R):					
	Asser Reas	$rtion\ (A)$: Ecotone shows more diversite $ron\ (R)$: Ecotone is a transition zone be	y. tween	two or more diverse com	munities.					
	(1)	Both (A) and (R) are correct, and (R) is	the co	orrect explanation of (A).						
	(2)	Both (A) and (R) are correct, but (R) is	not th	ne correct explanation of (A).					
	(3)	(A) is true, but (R) is false.								
	(4)	(A) is false, but (R) is true.								
9.	"Eco	"Ecology is the 'Science of Community' " was stated by:								
	(1)	Charles Elton								
	(2)	Karl Fredericks								
	(3)	Eugene Odum								
	(4)	Frederic Clements								
10.	The	largest unit climax community repre								
	(1)	Landscape								
	(2)	Biota								
	(3)	Biosphere								
	(4)	Biome								
		0 1	Daniel	Mark						

11.	Wh	ich of the following are sedimentary roc	ks?							
	A.	Geyserite								
	B.	Pumice rocks								
	C.	Chalk								
	D.	Limestone								
	(1)	A, B, C	(2)	A, B, D						
	(3)	A, C, D	(4)	B, C, D						
12.	Whi	ch of the following has the longest resid	ence	time?						
	(1)	Groundwater								
	(2)	Ice caps and glaciers								
	(3)	Lakes								
	(4)	Oceans								
13.	Whi	Which of the statements given below are correct with reference to equilibrium?								
	A.	Entropy remains constant.								
	B.	Used to define reversible reaction char	nges.							
	C.	Thermodynamically controlled process								
	D.	There may be a net heat transfer.								
	(1)	A, B, C	(2)	A, C, D						
	(3)	A, B, D	(4)	B, C, D						
14.	Bulk	density of soil may be calculated as :								
	(1)	Moisture content of soil / Volume of soi	1							
	(2)	Weight of soil / Volume of soil								
	(3)	Moisture content of soil / Weight of soil	l							
	(4)	Volume of soil / Weight of soil								
		Space for Ro								

		**			
15.	The f	actors that slow soil formation includ	e:		
	A. =	High lime content in parent material			
	В.	High quartz content in parent mater	ial		
	C.	High humidity			
	D.	High clay content in parent material			
	(1)	A, B, C			
	(2)	A, C, D			
	(3)	A, B, D			
	(4)	B, C, D			
16.	Whi	ch of the following is known as Fe-lov	ng element ?		
	(1)	Ironophile			
	(2)	Siderophile			
	(3)	Lithophile	,		
	(4)	Metallophile			
17.	The	outpouring basaltic magma in effusiv	e volcanic eruption has		
	(1)	Low viscosity and Low gas			
	(2)	High viscosity and Low gas			
	(3)	Low viscosity and High gas			
	(4)	High viscosity and High gas			
18.	The dist	movement of fluids through porous ance and flow connectivity is explaine	materials like rocks dued by:	ue to pressure o	lifferences
	(1)	Fick's law of diffusion			

Darcy's law

Steno's law

Coefficient of permeability

(2)

(3)

(4)

19.	The maximum permissible limit for Fluoride in drinking water is:						
	(1)	0.15 mg/L					
	(2)	1.5 mg/L					
	(3)	$5~\mathrm{mg/L}$					
	(4)	$0.5~\mathrm{mg/L}$					
20.	Sun	natra Tsunami, 2004 was generated by	an earthquake measuring o	n Ric	chter		
	Scal	e, caused by the subduction of	_				
	(1)	8·0, India plate below the Burma plate					
	(2)	9-3, Indo-Australian plate below the Bu	-				
	(3)	7.0, plate to the east of Nicobar Island					
	(4)	8-5, India plate above the Burma plate					
21.	Hyd	el projects provide :					
	(1)	Only electricity					
	(2)	Electricity and irrigation					
	(3)	Aquaculture, electricity, irrigation and	flood control				
	(4)	Flood control					
22.	The	largest solar park is located in :		32			
	(1)	Rajasthan, India					
	(2)	Ningxia, China					
	(3)	Karnataka, India					
	(4)	Coahuila, Mexico					

- 23. Which among the following is used as a moderator in nuclear reactors?
 - (1) Plutonium
 - (2) Lead
 - (3) Graphite
 - (4) Cesium
- 24. The correct distribution of solar energy spectrum is:
 - (1) 5% ultraviolet, 45% visible light, 50% infrared radiation
 - (2) 0% ultraviolet, 40% visible light, 60% infrared radiation
 - (3) 100% visible light
 - (4) 40% ultraviolet, 40% visible light, 20% infrared radiation
- 25. The term PCRA stands for
 - (1) Petroleum Council Research Association
 - (2) Public Conservation Research Association
 - (3) Petroleum Conservation Research Association
 - (4) Partial Counting of Remaining Amendment
- 26. Match List I with List II and choose the correct answer using the codes given below:

	List I		List II
a.	Vast tracts of land covered with	i.	Solar
	wind power turbines		
b.	Used directly for heating buildings	ii.	Wind power
	Clean form of energy	iii.	Geothermal energy

Codes:

- (1) a-iii, b-ii, c-i
- (2) a-ii, b-iii, c-i
- (3) a-i, b-ii, c-iii
- (4) a-iii, b-i, c-ii

27. Match List I with List II and choose the correct answer using the codes given below:

	List I		List II
	$(Type\ of\ coal)$		Energy content
			(MJ/kg)
a.	Peat	i.	31 to 36
b.	Bituminous	ii.	11 to 16
c.	Anthracite	iii.	25 to 35

(1) a-ii, b-iii, c-i

(2) a-iii, b-ii, c-i

(3) a-ii, b-i, c-iii

(4) a-iii, b-i, c-ii

28. The petroleum product used for paving roads, roofing materials and floor covering is:

- (1) Petroleum jelly
 - (2) Paraffin
 - (3) Petroleum coke
 - (4) Asphalt

29. The equation representing Stefan-Boltzmann law is:

(1) $E = \sigma T^4$

(2) $E = \sigma T^3$

(3) $E = \sigma T^5$

(4) $E = \sigma T^6$

30. Arrange the following Electromagnetic waves in the increasing order of wavelength:

- A. Visible rays
- B. Radio waves
- C. X-rays
- D. Cosmic rays
- $(1) \quad D < C < A < B$
- $(2) \quad C < D < B < A$
- $(3) \quad D < A < B < C$
- $(4) \quad B < A < C < D$

-			Space	e for	Rougl	n Work			
	(4)	1000 times							
	(3)	300 times							
	(2)	100 times							
	(1)	30 times							
35.		SPL of 10 dB is 10 tind B as compared to 1 dB		ntens	e tha	n 1 dB, ho	ow much wi	ll be the inte	ensity of
	(3)	Alum			(4)	Polymer			
	(1)	Ferrous sulphate			(2)	Ferric cl			
34.	Dur	ing drinking water tre	atment pro	cess,				led as a coag	ulant :
	(4)	$125~\mathrm{mg/L}$							
	(3)	50 mg/L							
	(2)	$150~\mathrm{mg/L}$							
	(1)	$100 \mathrm{\ mg/L}$							
33.	250 mg/L. If its TSS removal efficiency is expected to be 60 percent, what is the expected average TSS concentration in the effluent?						eation of expected		
	(4)	Centrifugal collector							
	(3)	Gravitational settling	cnamber						
	(2)	Electrostatic precipita							
	(1)	Fabric filtration	ton						
32.	matt	ch among the following ter with size less than I		vices	are n	ost efficie	nt for the re	movar or par	liculate
	(3)	8°C/km			(4)	7°C/km		l of now	tiouloto
	(1)	6°C/km			(2)				
	altit	ude. The rate of temper	ature chan	ge ın		9.8°C/km			
31.	In tr	oposphere, the temper	ature of th	e am	bient	air usuall	y decreases	with an incr	ease in

			10				25	
36.		sound level measure at is the sound level a						y is 85 dB.
	(1)	80 dB			(2)	120 dB		
	(3)	50 dB			(4)	72 dB		
37.	The	dominant type of rad	iation emitte	ed are	in the	e following or	der:	
	(1)	X-ray, Beta, Alpha,	Gamma					
	(2)	Alpha, Beta, Gamm	a, X-ray					
	(3)	Beta, Gamma, X-ra	y, Alpha					
	(4)	Beta, X-ray, Alpha,	Gamma					
38.	Wha	t are the radioactive	elements fou	ınd na	turall	y on Earth?		
	(1)	Radium and Thoriu	m					
	(2)	Radium and Poloniu	ım					
	(3)	Uranium and Thori	um					
	(4)	Potassium and Thor	ium					
39.	Soils	are classified accord	ing to the te	xture i	n the	order of :		
	(1)	Silt, Sand, Clay, Gra	avel					
	(2)	Silt, Clay, Sand, Gra	avel					
	(3)	Sand, Clay, Gravel,	Silt					
	(4)	Gravel, Sand, Silt, C	Clay					
40.	Wha	t are the primary sou	rces of marii	ne poll	ution	?		
	(1)	Deforestation and so	oil erosion					
	(2)	Agricultural runoff	and sewage d	lischaı	rge			
	(3)	Solar radiation and	atmospheric	gases				
	(4)	Volcanic activity and	l tectonic pro	cesses	3			

41.		hetic gaseous and liquid fuels produce or crude oil are known as :	ed fro	rom solid coal or sources other than natural
	(1)	Biogas	(2)) Biofuels
	(3)	Synfuels	(4)) Liquid fuels
42.	Whic	ch one of the following can be used to p	recip	pitate heavy metals?
	(1)	Sulphuric acid	(2)) Lime
	(3)	Hydrochloric acid	(4)) Acetic acid
43.	Whi	ch toxic compound is <i>not</i> found in e-wa	ste?	?
	(1)	Mercury	(2)	c) Chromium
	(3)	Neon	(4)	Lead
44.	Whi	ch one of the following is <i>not</i> a univers	al wa	vaste?
	(1)	Pesticides		
	(2)	Batteries		
	(3)	Solvents used in degreasing		19
	(4)	Mercury containing equipment		
45.	The was	waste with high moisture content a te is more suitable for :	ınd g	greater proportion of organic biodegradable
	(1)	Incineration		
	(2)	Pyrolysis		
	(3)	Biomethanation		
	(4)	Gasification		
46.	Wh	ich of the following binding reagents is	not	$m{t}$ used in solidification and stabilisation ?
	(1)	Fly ash	(2	2) Portland cement
	(3)	CO_2	(4	4) Gypsum

47.		n bins or containers before they start overflowing and avoid multiple handling of tes in transportation vehicles prior to final disposal are essential components of:
	(1)	Segregation of municipal solid wastes

(2) Storage of municipal solid wastes

(3) Transportation of municipal solid wastes

(4) Processing of municipal solid wastes

48. Industries generating hazardous waste are classified as:

(1) Brown

(2) Green

(3) Yellow

(4) Red

49. Which of the following substances is generally **not** considered toxic?

(1) Benzene

(2) Carbonic acid

(3) Ethylene

(4) Carbon monoxide

50. When the smaller animals are intoxicated by ingesting plastic, they are passed on to the larger animals disrupting the interrelated connections within the food chain and further the process goes on to higher level in the food chain. This is called:

(1) Pollution

(2) Biomagnification

(3) Bioconversion

(4) Toxicant

51. Match List I with List II and choose the correct answer using the codes given below:

	$List\ I$		List II
a.	Category A	i.	Screening required. Will be divided into two categories
b.	Category B	ii.	Screening indicates requirement of EIA
c.	Category B_1	iii.	Screening indicates no requirement of EIA
d.	Category B ₂	iv.	EIA required. No screening required

Codes:

(1) a-iv, b-ii, c-iii, d-i

(2) a-iv, b-iii, c-i, d-ii

(3) a-iv, b-i, c-ii, d-iii

(4) a-iii, b-iv, c-ii, d-i

52. Which of the following best describes the function of Environmental Management Plan as part of the EIA report / ES?

- (1) It describes the baseline environmental impacts.
- (2) It describes the environmental impacts of the proposal.
- (3) It describes the actions and auditing procedures required.
- (4) It describes the project proposal in detail.

53. "Cradle to Grave" approach was introduced in which analysis?

- (1) Cost-benefit analysis
- (2) Life cycle analysis
- (3) Environmental impact analysis
- (4) Environmental management plan

54. Risk characterization provides information to:

- (1) Exclude uncertainty from risk assessment.
- (2) Conduct hazard identification.
- (3) Set regulatory standards.
- (4) Select perfect risk management options.

- **55.** What is the role of Access and Benefit-Sharing Clearing-House (ABSCH) under the Nagoya Protocol?
 - (1) It monitors illegal trade of genetic resources.
 - (2) It promotes unrestricted access to genetic resources.
 - (3) It provides a platform for sharing research findings.
 - (4) It facilitates the exchange information related to access and benefit sharing.
- **56.** What is the colour code for biomedical waste containers used for disposing of human anatomical wastes, such as body parts and tissues?
 - (1) Black
 - (2) Blue
 - (3) Red
 - (4) Yellow
- **57.** How often does the Conference of the Contracting Parties (COP) to the Ramsar Convention meet?
 - (1) Every year
 - (2) Every three years
 - (3) Every four years
 - (4) Every five years
- 58. What type of activities are allowed in CRZ-1 areas?
 - (1) All type of construction and development
 - (2) Industrial activities
 - (3) Activities related to traditional fishing communities and local population improvement
 - (4) Tourism related activities

59.	Which set of goals succeeded	the Millenium	Development	Goals in 2015	5?
------------	------------------------------	---------------	-------------	---------------	----

- (1) Global Economic Development Goals
- (2) Global Environmental Goals
- (3) Universal Human Rights
- (4) Sustainable Development Goals

60. World Environment Day is celebrated every year on June 5th to remember the :

- (1) First Earth Summit
- (2) Second Earth Summit
- (3) World Commission on Environment and Development
- (4) Montreal Protocol

61. Which of the following is the most unstable average?

- (1) Harmonic Mean
- (2) Median
- (3) Mode
- (4) Geometric Mean

62. According to Yule and Kendall, average must possess the following features:

- A. It should be capable of further algebraic treatment.
- B. It should have sampling stability.
- C. It should be based on all the items in the data.
- D. It should not be unduly influenced by any single item or a group of items.
- (1) A, B, C
- (2) A, C, D
- (3) B, C, D
- (4) A, B, C, D

63.	Qua	rtile deviation is always a/an	_ mea	asure of dispersion.		
ì	(1)	Absolute				
	(2)	Reciprocal				
	(3)	Frequent				
	(4)	Assumed				
64.		first four central moments of a distrib	ution	are 0, 2.5, 0.7, and 18.75. Ca	lcul	ate the β_1
	of th	e distribution.				
	(1)	3	(2)	+ 0.031		
	(3)	33	(4)	+ 0.31		
65.	r is	when the two regression lines	coinci	de.		
	(1)	0.9	(2)	0.1		
	(3)	< 1	(4)	1		
66.	Calc	ulate correlation coefficient from the fo	llowir	ng data :		
		$b_{xy} = 0.72, b_{yx} = 0.78$				
	(1)	- 0.06	(2)	+ 0.06		
	(3)	0.749	(4)	0-923		
67.	The	Lotka-Volterra model :				
	A.	describes the interaction between a pr	rev an	id a predator		
	В.		icy an	a preation.		
		is based on matrix.				
	C.	is based on differential equation.				
	D.	is an example of Kolmogorov model.	-			

(2)

A, B, D

(4) A, B, C, D

(1)

(3)

A, B, C

B, C, D

- **68.** Which of the following is/are *not* correct?
 - A. If there is no difference between the expected and observed frequencies, the χ^2 is zero.
 - B. If the difference between expected and observed frequencies is not significant, then the hypothesis is accepted.
 - C. If the calculated χ^2 value is higher than the expected frequency the difference is significant, then the hypothesis is accepted.
 - (1) C
 - (2) A, C
 - (3) B, C
 - (4) B
- 69. The merits of Arithmetic Mean are:
 - A. It is based on the value of every item in the series.
 - B. It gives greater importance to bigger items of a series and lesser importance to smaller items.
 - C. Its formula is rigidly defined. The mean is the same for the series, whosoever calculates it.
 - D. The mean is a more stable measure of central tendency.
 - (1) A, B, C
 - (2) A, C, D
 - (3) B, C, D
 - (4) A, B, C, D
- 70. Which one is best used to analyse the difference of means?
 - (1) t-test
 - (2) Kurtosis
 - (3) $\chi^2 \text{ test}$
 - (4) Skewness

71.	Whi	ich of the following can help in reducing	g biod	iversity loss?			
	(1)	Continued growth of urban area					
	(2)	Introduction of invasive species					
	(3)	Overexploitation of resources					
	(4)	Implementing sustainable land use p	olicy				
72.	Whi	ch of the following global environments	al issu			ets?	
	(1)	Air pollution		·	, 14		
	(2)	Sea level rise					
	(3)	Ocean acidification					
	(4)	Soil erosion					
		4-1-1-1					
73.	-	is an effect of sea level rise.					
	(1)	Decreased coastal erosion					
	(2)	Infusion of salt water into coastal aqu	ifers				
	(3)	Extension of coastal habitats					
	(4)	Increased availability of fresh water					
74.	The	Ramsar Convention is focused on the c	onser	vation of			
	(1)	Industries	(2)	Forests			
	(3)	Mountains	(4)	Wetlands			
75.	In w	hich year was the National Action Plan	n on C	limate Change l	aunched ?		
	(1)	2006					
	(2)	2008					
	(3)	2010			8		
	(4)	2014					

Cod	les:			
Cod	les:	4		
(1)	a-iii, b-ii, c-iv, d-i		(2)	a-iii, b-i, c-iv, d-ii
(3)	a-ii, b-iii, c-i, d-iv		(4)	a-i, b-iii, c-ii, d-iv
Whe	ere did the Silent Valley Mo	vemen	t take place	e?
(1)	Himalayan Forest		(2)	Sundarban Forest
(3)	North Eastern States		(4)	Western Ghats
	movement initiated by Sun	derlal	Bahuguna	is
(1)	Chipko Movement			
(2)	Silent Valley Movement			
(3)	Sunderban Movement			
(4)	Appiko Movement			
Wh	ich one of the following is th	e key	threat to ac	hieve the aims of Project Tiger?
(1)	Deforestation for plantati	ons		
(2)	Contaminated water bodi	es		
(3)	Afforestation			
(4)	Poaching			
		. O. 1.	: O P.	air and Contro is located at .
Ind		-Goar		siness Centre is located at:
(1)	Chennai		(2)	Hyderabad
()	New Delhi		(4)	Mumbai

81.	Which of the	following	boundary	exists	between	4 0	and	50	kilometres	above	the	Earth's
	surface?											

- (1) Tropopause
- (2) Stratopause
- (3) Stratosphere
- (4) Mesopause

82. The phenomena of decline in temperature with increasing altitude is referred to as:

- (1) Temperature reduction rate
- (2) Environmental weather rate
- (3) Environmental lapse rate
- (4) Environmental temperature change

83. The mass of water vapour in a given volume of air is:

- (1) Absolute humidity
- (2) Relative humidity
- (3) Mixing ratio
- (4) Vapour pressure

84. Given below are two statements, one is labelled as Assertion (A) and other as Reason (R): Assertion (A): A considerable amount of water is retained in the soil due to capillary action. Reason (R): Water is characterized by the highest surface tension among all other liquids.

- (1) Both (A) and (R) are true, and (R) is the correct reason of (A).
- (2) Both (A) and (R) are not true.
- (3) (A) is true, but (R) is false.
- (4) (A) is false, but (R) is true.

85. Match List I with List II and choose the correct answer using the codes given below :

List-I	List-II
(SDG No.)	(SDG)
a. SDG 5	i. Life below water
b. SDG 6	ii. Climate Action
c. SDG 13	iii. Life on Land
d. SDG 14	iv. Clean Water and Sanitation
e. SDG 15	v. Gender equality

Codes:

- (1) a-v, b-iv, c-i, d-ii, e-iii
- (2) a-v, b-iv, c-iii, d-i, e-ii
- (3) a-v, b-iv, c-ii, d-i, e-iii
- (4) a-iv, b-v, c-ii, d-i, e-iii

86. The rate of cooling of vertically moving unsaturated air is _____

- (1) 1°C/1000 metres
- (2) 5°C/1000 metres
- (3) 10°C/1000 metres
- (4) 20°C/1000 metres

87. Match List I with List II and choose the correct answer using the codes given below:

List-I		List-II
Biogeographic Zone		Distribution
a. Trans-Himalaya	i.	Rajasthan
b. Semi-Arid	ii.	Jammu and Kashmir, Ladakh
c. Desert	iii.	North Gujarat, Rajasthan
d. Indo-Gangetic Plain	iv.	Bihar, West Bengal
e. Coast	v.	Tamil Nadu, Maharashtra

Codes:

- (1) a-i, b-ii, c-iii, d-v, e-iv
- (2) a-ii, b-iii, c-iv, d-i, e-v
- (3) a-ii, b-iii, c-i, d-iv, e-v
- (4) a-v, b-iv, c-i, d-ii, e-iii

88.	Ene	rgy possessed by the molecules by virtu	e of tl	neir motion is called
	(1)	Activated energy	(2)	Kinetic energy
	(3)	Static energy	(4)	Internal energy
89.		Satellite data for the Indian Subcontal maintained by NRSC.	inent	is available for the user through
	(1)	GAGAN	(2)	Bhuvan
	(3)	IIRS	(4)	ISRO
90.		environmental applications of RS and and Land cover changes can be assessed		like climate change assessment and Land
	(1)	NDVI	(2)	NDBI
	(3)	NDWI	(4)	NDQI
91.	of C	O_2 at 6 atm pressure provided the temp		
	(1)	0.009 M	(2)	0.5 M
	(3)	0.006 M	(4)	0.01 M
92.	Phot	ochemical smog was first observed in :		
	(1)	London	(2)	Los Angeles
	(3)	Paris	(4)	Tokyo
93.	The	basic principle governing Spectrophoto	metry	is
	(1)	Snell's law of reflection		
	(2)	Huygens' principle of refraction		
	(3)	Beer-Lambert's law		
	(4)	Fermat's principle		
94.		05 Molar Proline-Ninhydrin complex and wavelength in a 1 cm cuvette, calcu		on has a molecular absorbance of 0.15 at he molar extinction coefficient (ϵ).
	(1)	$50 \; \mathrm{mM^{-1} \; cm^{-1}}$	(2)	$3 \text{ M}^{-1} \text{ cm}^{-1}$
	(3)	$1 \ \mathrm{M^{-1} \ cm^{-1}}$	(4)	$0.1~{ m M}^{-1}~{ m cm}^{-1}$

95 .				as Assertion (A) and other as Reason (R):
		ertion (A): Radon is an inert gas and is	radio	active.
		son(R): All inert gases are radioactive.		or Posterius
		Both (A) and (R) are correct, and (R) is		
	(2)	Both (A) and (R) are correct, and (R) is	not t	he correct explanation of (A).
		(A) is true, but (R) is false.		
	(4)	(A) is false, but (R) is true.		
96.		kins and Furans are two toxic gas	eous	pollutants which are measured by the
	(1)	GC - MS	(2)	TLC
	(3)	ICP – AAS	(4)	AAS
97.	Gree	enhouse gases can absorb radiations of	wave	length:
	(1)	< 0.3 μm	(2)	$> 2-3 \mu \text{m}$
	(3)	> 4 µm	(4)	$< 4 \ \mu m$
98.	Solu	ability (S) of a sparingly soluble salt of	type 1	$ m AB$ is related to the solubility product ($ m K_{sp}$)
	as:			
	(1)	$S = K_{sp}^2$	(2)	$S = 2 K_{sp}$
	(3)	$S = \sqrt{K_{sp}}$	(4)	$S = K_{sp}$
99.	Biol	ogical Oxygen Demand (BOD) is alway	s less	than:
	(1)	Dissolved Oxygen (DO)		
	(2)	Maximum Probable Number (MPN)		
	(3)	Chemical Oxygen Demand (COD)		
	(4)	Standard Plate Count (SPC)		
			1100	severe harm to the of human
100.	Higl bein	h exposure to Cd, Hg, and Pb will cangs.	luse a	
100.	bein	ngs.		
100.			(2) (4)	Liver

ELIGIBILITY/ COMPETITIVE EXAM – 2024 PAPER–2 TOTAL NUMBER OF QUESTIONS: 100 MAXIMUM MARKS: 200 MENTION YOUR REGISTER NUMBER

Version Code

A 1

Subject: ENVIRONMENTAL SCIENCES

INSTRUCTIONS FOR CANDIDATES

DOs:

- 1. This question booklet is issued to you at 9.55 a.m. by the room invigilator.
- 2. Check whether the Register Number has been entered and shaded in the respective circles on the OMR answer sheet.
- 3. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 4. The Version Code and Serial Number of this question booklet should also be entered on the Nominal Roll without any mistakes.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.

DONTs:

• THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED / MUTILATED / SPOILED.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. In case of usage of signs and symbols in the questions, the regular textbook connotation should be considered unless stated otherwise.
- 2. This question booklet contains 100 questions and each question will have one statement and four different options / responses and out of which you have to choose one correct answer.
- 3. At 10.00 a.m. remove the paper seal of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet within 5 minutes of the commencement of exam. Read each item and start answering on the OMR answer sheet.
- 4. Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

X	ರೆಯಾ	ದ ಕ್ರಷ	ಶು				ड क्यू, स	ಕ್ರಮಗಳ) W	/RON	G MET	HODS			
COF	RECT	METI	HOD	8	2	3	4	1	2	3	(10)	1	•		4
1		3	4	•	2	3	4	1		3	4	1	2	3	4

- 5. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- 6. Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 7. Once the last Bell rings at 1.00 P.M., stop writing on the OMR answer sheet and hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating the top sheet (Office copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you.
- All questions carry equal marks.
- 10. Use of Mobile Phones, Calculators and other Electronic / Communication gadgets of any kind is prohibited inside the Examination venue.

(24 - A1)

29