MHT-CET 2024 Question Paper - Maths

4th May 2024 (Shift - I)

- Suppose A is any 3×3 non-singular matrix and 1. (A-3I)(A-5I)=0 where $I=I_3$ and $O=O_3$. Here O₃ represent zero matrix of order 3 and I₃ is an identity matrix of order 3. If $\alpha A + \beta A^{-1} = 4I$, then $\alpha + \beta$ is equal to
 - (A) 13
- (B) 7
- 12 (C)
- (D)
- lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ 2. The $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if
 - (A) k = 1 or k = -1
- (B) k = 0 or k = -3
- k = 3 or k = -3
- (D) k = 0 or k = 3
- 3. The variance of first 50 even natural numbers is
 - (A) 833
- (C)
- 4. The statement pattern
 - $[p \land (q \lor r)] \lor [\sim r \land \sim q \land p]$ is equivalent to
 - (A) $q \vee r$
- (B) $p \vee r$
- (D) p
- If $8f(x) + 6f(\frac{1}{x}) = x + 5$ and $y = x^2 f(x)$, then
 - $\frac{dy}{dx}$ at x = -1 is
- (A) 14 (B) -14 (C) $\frac{1}{14}$ (D) $-\frac{1}{14}$
- The number of ways in which 5 boys and 3 girls 6. can be seated on a round table, if a particular boy B₁ and a particular girl G₁ never sit adjacent to each other, is
 - (A) 7!
- (B) $5 \times 6!$
- (C) $6 \times 6!$
- (D) $5 \times 7!$
- The value of $\cot\left(\csc^{-1}\frac{5}{3} + \tan^{-1}\frac{2}{3}\right)$ is
 - (A) $\frac{5}{17}$ (B) $\frac{6}{17}$ (C) $\frac{3}{17}$ (D) $\frac{4}{17}$

- $\int \left(1+x-\frac{1}{x}\right)e^{x+\frac{1}{x}} dx \text{ equal to}$
 - (A) $(x+1)e^{x+\frac{1}{x}} + c$, (where c is a constant of integration)

- (B) $-xe^{\frac{x+\frac{1}{x}}{x}} + c$, (where c is a constant of
- (C) $(x-1)e^{\frac{x+1}{x}} + c$, (where c is a constant of
- (D) $xe^{x+\frac{1}{x}} + c$, (where c is a constant of
- The function $f(x) = \frac{\log_e(\pi + x)}{\log_e(e + x)}$ is
 - (A) increasing on $(0,\infty)$.
 - increasing on $\left(0, \frac{\pi}{e}\right)$, decreasing on $\left(\frac{\pi}{e}, \infty\right)$.
 - (C) decreasing on $(0,\infty)$.
 - (D) decreasing on $\left(0, \frac{\pi}{e}\right)$, increasing on $\left(\frac{\pi}{e}, \infty\right)$
- 10. Let y = y(x) be the solution of the differential equation $\sin x \frac{dy}{dx} + y \cos x = 4x, x \in (0, \pi)$.
 - If $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{6}\right)$ is equal to
 - (A) $-\frac{4}{9}\pi^2$
- (B) $\frac{4}{9\sqrt{3}}\pi^2$
- (C) $\frac{-8}{9\sqrt{3}}\pi^2$ (D) $-\frac{8}{9}\pi^2$
- The value of $I = \int \frac{x^2}{(a+bx)^2} dx$ is 11.
 - (A) $\frac{1}{h^3} \left[a + bx + 2a \log \left| a + bx \right| \frac{a^2}{a + bx} \right] + c$,
 - (where c is the constant of integration)
 - (B) $\frac{1}{b^3} \left[a + bx 2a \log |a + bx| + \frac{a^2}{a + bx} \right] + c$, (where c is the constant of integration)
 - (C) $\frac{1}{b^3} \left| a + bx 2a \log \left| a + bx \right| \frac{a^2}{a + bx} \right| + c$, (where c is the constant of integration)
 - (D) $\frac{1}{b^3} \left| a + bx + 2a \log \left| a + bx \right| + \frac{a^2}{a + bx} \right| + c$, (where c is the constant of integration)

MHT-CET 2024 Question Paper – Maths 4th May 2024 (Shift – I)

- 12. Let $\overline{a} = \alpha \hat{i} + 3\hat{j} \hat{k}, \overline{b} = 3\hat{i} \beta\hat{j} + 4\hat{k}$ and $\overline{c} = \hat{i} + 2\hat{j} 2\hat{k}$, where $\alpha, \beta \in \mathbb{R}$, be three vectors.

 If the projection of \overline{a} on \overline{c} is $\frac{10}{3}$ and $\overline{b} \times \overline{c} = -6\hat{i} + 10\hat{j} + 7\hat{k}$, then the value of $2\alpha + \beta$ is
 - (A) 3
- (B) 4
- (C) 5
- (D) 6
- 13. If $4ab = 3h^2$, then the ratio of the slope of lines represented by $ax^2 + 2hxy + by^2 = 0$ is
 - (A) $\sqrt{3}:1$
- (B) $1:\sqrt{3}$
- (C) 1:3
- (D) 3:1
- 14. If $\sin (\cot^{-1} (x + 1)) = \cos (\tan^{-1} x)$ then considering positive square roots, x has the value _____.
 - (A) 0
- (B) $\frac{9}{4}$
- (C) $\frac{1}{2}$
- (D) $-\frac{1}{2}$
- 15. A random variable has the following probability distribution

X:	0	1	2	3	4	5	6	7
P(<i>x</i>):	0	2p	2p	3р	p ²	$2p^2$	$7p^2$	2p

The then value of p is

- (A) $\frac{1}{10}$
- (B) $\frac{1}{30}$
- (C) $\frac{1}{100}$
- (D) $\frac{3}{20}$
- 16. Let A and B be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then the probability of both of them occur together is
 - (A) 0.1
- (B) 0.2
- (C) 0.01
- (D) 0.02
- 17. Let $\left(-2 \frac{1}{3}i\right)^3 = \frac{x + iy}{27}$, $i = \sqrt{-1}$, where x and y

are real numbers, then (y - x) has the value

- (A) -91
- (B) -85
- (C) 85
- (D) 91

18. The shaded region in the following figure is the solution set of the inequations

- (A) $x + 2y \le 6$, $5x + 3y \ge 15$, $x \le 7$, $y \le 6$, x, $y \ge 0$
- (B) $x + 2y \ge 6$, $5x + 3y \ge 15$, $x \le 7$, $y \le 6$, x, $y \ge 0$
- (C) $x + 2y \ge 6$, $5x + 3y \le 15$, $x \ge 7$, $y \le 6$, x, $y \ge 0$
- (D) $x + 2y \le 6$, $5x + 3y \le 15$, $x \le 7$, $y \ge 6$, x, $y \ge 0$
- 19. Let p = q and q = q be the position vectors of P and Q respectively, with respect to O and |p| = p, |q| = q. The points R and S divide PQ internally and externally in the ratio 2: 3 respectively. If OR and OS are perpendiculars, then
 - $(A) 9p^2 = 4q^2$
- (B) $4p^2 = 9q^2$
- (C) 9p = 4q
- (D) 4p = 9q
- 20. The value of a for which the volume of parallelepiped formed by $\hat{i} + a \hat{j} + \hat{k}$, $\hat{j} + a \hat{k}$ and $a \hat{i} + \hat{k}$ becomes minimum is
 - (A) $\frac{-1}{\sqrt{3}}$
- (B) $\frac{1}{\sqrt{3}}$
- (C) $\sqrt{}$
- (D) $-\sqrt{3}$
- 21. The approximate value of $log_{10} 1002$ is (Given $log_{10} e = 0.4343$)
 - (A) 3.0117
- (B) 3.0009
- (C) 2.9999
- (D) 3.1119
- 22. The sum of intercepts on coordinate axes made by tangent to the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ is
 - (A)
- (B) 2a
- (C) $2\sqrt{a}$
- (D) $\sqrt{2}a$

MHT-CET 2024 Question Paper - Maths 4th May 2024 (Shift – I)

- 23. If the angles of a triangle are in the ratio 4:1:1, then the ratio of the longest side to the perimeter is
 - (A) 1:6
- (B) $\sqrt{3}:(2+\sqrt{3})$
- 1: $(2+\sqrt{3})$
- (D) 2:3
- 24. Considering only the Principal values of inverse functions, the set

$$A = \left\{ x \ge 0 \mid \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \right\}$$

- (A) contains two elements.
- (B) contains more than two elements.
- (C) is an empty set.
- is a singleton set. (D)
- The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through 25. the point (13, 32). The line K is parallel to line L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then the distance between L and K is _____ units.
 - (A)
- (B) $\sqrt{17}$
- (D) $\frac{23}{\sqrt{17}}$
- The integral $\int_{0}^{2} \left([x] + \log_{c} \left(\frac{1+x}{1-x} \right) \right) dx$, where [x] 26.

represent greatest integer function, equals

- (D) $2\log_{e}\left(\frac{1}{2}\right)$
- If the function $f(x) = x^3 + e^{\frac{\pi}{2}}$ and $g(x) = f^{-1}(x)$, 27. then the value of g'(1) is
 - (A) 1
- (C) 2
- (D)
- A wire of length 2 units is cut into two parts, 28. which are bent respectively to form a square of side x units and a circle of radius of r units. If the sum of the areas of square and the circle so formed is minimum, then
 - (A) $2x = (\pi + 4) r$
- (B) $(4 \pi)x = \pi r$
- (C) x = 2r
- (D) 2x = r
- Let $L_1: \frac{x+1}{3} = \frac{y+2}{1} = \frac{z+1}{2}$ and

$$L_2: \frac{x-2}{1} = \frac{y+2}{2} = \frac{z-3}{3}$$

be two given lines. Then the unit vector perpendicular to L_1 and L_2 is

- (A) $\frac{-\hat{i} + 7\hat{j} + 7\hat{k}}{\sqrt{99}}$ (B) $\frac{-\hat{i} 7\hat{j} + 5\hat{k}}{5\sqrt{3}}$
- (C) $\frac{-\hat{i} + 7\hat{j} + 5\hat{k}}{5\sqrt{2}}$ (D) $\frac{7\hat{i} 7\hat{j} 7\hat{k}}{\sqrt{20}}$
- Let a, $b \in R$. If the mirror image of the point 30. p(a, 6, 9) w.r.t. line $\frac{x-3}{7} = \frac{y-2}{5} = \frac{z-1}{-9}$ is
 - (20, b, -a-9), then |a+b| is equal to
 - (A) 88
- (B)
- (C) 90
- (D) 84
- A random variable X has the following 31. probability distribution

X:	1	2	3	4	5	-
P(X):	\mathbf{k}^2	2k	k	2k	$5k^2$	

Then P(X > 2) is equal to

- The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is
 - (A) zero.
- (B) one.
- (C) two.
- (D) three.
- If $f(x) = \log_{e} \left(\frac{1-x}{1+x} \right)$, |x| < 1, then $f\left(\frac{2x}{1+x^2} \right)$ is 33.

equal to

- (A) $2f(x^2)$
- (B) -2f(x)
- (C) $(f(x))^2$
- (D) 2f(x)
- Let the vectors $\overline{a}, \overline{b}, \overline{c}$ and \overline{d} be such that 34. $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = \overline{0}$. Let P_1 and P_2 be the planes determined by the pair of vectors \overline{a} , \overline{b} and \overline{c} , \overline{d} respectively, then the angle between P₁ and P₂ is
 - (A)
- (C)
- If $I = \int e^{\sin\theta} (\log \sin\theta + \csc^2\theta) \cos\theta \ d\theta$, then I is 35. equal to
 - $e^{\sin\theta} (\log \sin\theta + \csc^2\theta) + c$, (where c is a constant of integration)
 - $e^{\sin\theta}(\log\sin\theta + \csc\theta) + c$, (where c is a (B) constant of integration)
 - (C) $e^{\sin\theta}(\log\sin\theta - \csc\theta) + c$, (where c is a constant of integration)
 - $e^{\sin\theta} (\log \sin\theta \csc^2\theta) + c$, (where c is a (D) constant of integration)

MHT-CET 2024 Question Paper - Maths 4th May 2024 (Shift – I)

- 36. The equation of the circle which has its centre at the point (3, 4) and touches the line 5x + 12y - 11 = 0 is
 - (A) $x^2 + y^2 6x 8y + 9 = 0$

 - (B) $x^2 + y^2 6x 8y + 25 = 0$ (C) $x^2 + y^2 6x 8y 9 = 0$ (D) $x^2 + y^2 6x 8y 25 = 0$
- A plane which is perpendicular to two planes 37. 2x - 2y + z = 0 and x - y + 2z = 4, passes through (1, -2, 1). The distance of the plane from the point (1, 2, 2) is
 - (A) 0 units
- (B) 1 units
- $\sqrt{2}$ units (C)
- (D) $2\sqrt{2}$ units
- The value of the expression 38. $\sqrt{3}$ cosec20° – sec20° is equal to

- Let $\overline{a}, \overline{b}$ and \overline{c} be three vectors having magnitude 1, 1 and 2 respectively. If $\overline{a} \times (\overline{a} \times \overline{c}) + \overline{b} = \overline{0}$, then the acute angle between $\frac{\overline{a}}{a}$ and \overline{c} is
 - (A)

- 40. The area bounded between the curves $y = ax^2$ and $x = ay^2 (a > 0)$ is 1 sq. units, then the value of a is
 - (A) $\frac{1}{\sqrt{3}}$ (B) $\frac{1}{2}$ (C) 1 (D) $\frac{1}{3}$
- The integral $\int \sec^{\frac{\pi}{3}} x \cdot \csc^{\frac{\pi}{3}} x \, dx$ is equal to 41.
 - $3(\tan x)^{-\frac{1}{3}} + c$, (where c is the constant of (A)
 - (B) $-\frac{3}{4}(\tan x)^{\frac{4}{3}} + c$, (where c is the constant of integration)
 - $-3(\cot x)^{\frac{1}{3}} + c$, (where c is the constant of (C) integration)
 - $-3(\tan x)^{\frac{2}{3}} + c$, (where c is the constant of (D) integration)
- 42. If sum of two numbers is 3, then the maximum value of the product of first number and square of the second number is
 - (A) 6
- (B) 4
- 5 (C)
- 3 (D)

- Given that the slope of the tangent to a curve 43. y = y(x) at any point (x, y) is $\frac{2y}{x^2}$. If the curve passes through the centre of the circle $x^2 + y^2 - 2x - 2y = 0$, then its equation is
 - (A) $x\log|y| = x 1$
 - (B) $x\log|y| = -2(x-1)$
 - (C) $x\log|y| = 2(x-1)$
 - (D) $x^2 \log |y| = -2(x-1)$
- If $y = ((x+1)(4x+1)(9x+1)...(n^2x+1))^2$, then $\frac{dy}{dx}$
 - (A) $\frac{n(n+1)(2n+1)}{4}$ (B) $\frac{n(n+1)(2n+1)}{6}$ (C) $\frac{n(n+1)(2n+1)}{2}$ (D) $\frac{n(n+1)(2n+1)}{3}$
- 45. A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability, that a student will get 4 or more correct answers just by guessing, is

- 46. A wet substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the open air loses half its moisture during the first hour, then the time t, in which 99% of the moisture will be lost, is
 - log 2

- $(D) \quad \frac{1}{2} \frac{\log 10}{\log 2}$
- $\lim_{x\to 0} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ has the value
 - (A) 2 (B) $\frac{1}{2}$ (C) 4

- Let a, $b \in (a \neq 0)$. If the function f is defined as

$$f(x) = \begin{cases} \frac{2x^2}{a}, & 0 \le x < 1 \\ a, & 1 \le x < \sqrt{2} \\ \frac{2b^2 - 4b}{x}, & \sqrt{2} \le x < \infty \end{cases}$$

is continuous in the interval $[0,\infty)$, then an ordered pair (a, b) is

- (A) $\left(-\sqrt{2},1-\sqrt{3}\right)$ (B) $\left(\sqrt{2},-1+\sqrt{3}\right)$ (C) $\left(\sqrt{2},1-\sqrt{3}\right)$ (D) $\left(-\sqrt{2},1+\sqrt{3}\right)$

- 49. If $(p \land \neg q) \land (p \land r) \rightarrow \neg p \lor q$ is false, then the truth values of p,q and r are respectively
 - (A) T, T, T
- (B) F, F, F
- (C) T, F, T
- (D) F, T, F
- 50. In $\triangle ABC$, with usual notations, if b=3, c=8, $m\angle A=60^{\circ}$, then the circumradius of the triangle is _____ units.
 - (A) $\frac{7}{3}$
- (B) $\frac{7\sqrt{2}}{3}$
- (C) $\frac{7}{\sqrt{3}}$
- (D) $\frac{7\sqrt{3}}{2}$