

JEE MAIN 2023

JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

UESTIONS &

Reproduced from Memory Retention

() 03:00 PM to 06:00 PM

🛗 24 JANUARY, 2023

Duration : 3 Hours

Maximum Marks : 300

SUBJECT - CHEMISTRY

RESULT JEE ADVANCED 2022

BEST RANK IN NORTH INDIA & IIT DELHI ZONE

AIR

AIR 6

AIR

Accomplish your **DREAM** with Reliable **FACULTY TEAM**

TARGET JEE Adv. 2024

Not satisfied with your **JEE Performance ?**

Join VISHESH For Class XII Passed / Repeater Students

One Year Classroom Course for Complete JEE (Main+Adv) Syllabus

STARTING FROM : **15 & 29 MARCH'23**

Reliable Institute : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com

CHEMISTRY

- 1. Sum of π -bonds in one molecule each of Peroxydisulphuric acid & Pyrosulphuric acid is:
- Ans. 8

(Chemical Bonding)

3.
$$\begin{array}{c} CH_3 \\ H-C-COOH \text{ (Lactic acid) has } K_a = 10^{-5} \\ OH \end{array}$$

pH of a solution containing 0.005M anionic form of above acid $\begin{bmatrix} I \\ H-C-COO^{-1} \end{bmatrix}$ is : OH

(Nearest integer)

Ans. 8

Sol. Salt of WA & SB

$$pH = \frac{1}{2} (pK_w + pK_a + \log C)$$
$$= \frac{1}{2} (14 + 5 - 3 + \log 5)$$
$$= 8.35 \approx 8$$

ew isotherm of a Which of the following statements are correct for given Andrew isotherm of CO 4.

- (i) Formation of liquid starts at point C.
- (ii) From point B to C amount of liquid decreases.
- (iii) Formation of liquid starts from point B.
- (iv) At points B & C, both liquid & vapour coexist.
- (2) ii, iii (3) iii, iv (4) i, iv (1) i, ii
- Ans. (3)
- (i) Formation of liquid ends at point C. Sol.
 - (ii) From B to C, amount of liquid increases.

(Real gas)

(Ionic Equilibrium)

10. An ideal solution containing $X_A = 0.7$ has VP = 350 torr Another ideal solution containing $X_B = 0.2$ has VP = 410 torr $P_A^o = ?$ (nearest integer)

Ans. 314

(Solution & Colligative Properties)

Sol. $0.7 P_A^o + 0.3 P_B^o = 350$

 $\& 0.2 P_{\rm A}^{\rm o} + 0.8 P_{\rm B}^{\rm o} = 410$

$$\therefore P_A^o = 314 \text{ torr}$$

11. H_2O_2 behave like reducing agent in which of the following reactions :

(1) $\operatorname{Fe}^{+2} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{Fe}^{+3} + \operatorname{H}_2\operatorname{O}$ (2) $\operatorname{H}_2\operatorname{S} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{SO}_4^{2-} + \operatorname{H}_2\operatorname{O}$ (3) $\operatorname{HOCl} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{Cl}^- + 2\operatorname{H}_2\operatorname{O} + \operatorname{O}_2$ (4) $\operatorname{Mn}^{+2} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{MnO}_2 + \operatorname{H}_2\operatorname{O}$

Ans. (3)

- **Sol.** H_2O_2 reduces HOCl to Cl^- and itself gets oxidised to O_2 .
- **12.** AB₃(g) dissociates into gaseous products with following data:

t _{1/2}	4 sec.	2 sec.	1 sec.	0.5 sec.	
P ₀ (AB ₃)	50 torr	100 torr	200 torr	400 torr	1
				C	

Order of reaction is

Ans. 2

Ans.

(Chemical Kinetics)

(p-Block (15-16 family))

E Al

Sol. $t_{1/2} \propto \frac{1}{P_o} \Rightarrow II \text{ order}$

13. Number of unpaired electron in highest occupied molecular orbital of following species is :

	N_2	${N_2}^\oplus$	O_2	${\rm O_2}^\oplus$
(1)	0	1	2	1
(2)	1	0	1	2
(3)	2	2	0	2
(4)	1	1	1	0
(1)				

(Chemical Bonding)

Sol. $N_2 \rightarrow \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \sigma 2p_z^2$ HOMO $N_2^{\oplus} \rightarrow \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \sigma 2p_z^1$ HOMO $O_2 \rightarrow \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \underbrace{\left[\pi^* 2p_x^1 = \pi^* 2p_y^1\right]}_{HOMO}$ $O_2^{\oplus} \rightarrow \sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_z^2, \left[\pi 2p_x^2 = \pi 2p_y^2\right] \underbrace{\left[\pi^* 2p_x^1 = \pi^* 2p_y^0\right]}_{HOMO}$ 14. Which is good oxidising agent ?

(i) Sm^{+2} (ii) Ce^{+2} (iii) Ce^{+4} (iv) Tb^{+4} (1) Sm^{+2} only (2) Ce^{4+} , Tb^{4+} (3) Ce^{+4} only (4) Ce^{2+} only **Ans. (2)** (f-Block)

- **Sol.** Ce^{4+} & Tb⁴⁺ are good oxidising agents (both get reduced to +3).
- 15. $K_2Cr_2O_7$ paper acidified with dil. H_2SO_4 turns green when exposed to :

(1)
$$SO_2$$
 (2) SO_3 (3) CO_2 (4) H_2S
(1) (d-Block)

Ans. (1)

Sol. SO₂
$$\xrightarrow{K_2Cr_2O_7}_{H^+}$$
 $Cr^{3+}_{(green)}$ + SO₄²⁻

16. α -particle, proton & electron have same kinetic energy. Select correct order of their de-Broglie wavelength.

(1)
$$\lambda_e > \lambda_p > \lambda_\alpha$$
 (2) $\lambda_\alpha > \lambda_e > \lambda_p$ (3) $\lambda_p = \lambda_\alpha = \lambda_e$ (4) $\lambda_p > \lambda_e > \lambda_\alpha$
(1) (Atomic Structure)

Ans. (1)

Sol.
$$\lambda = \frac{h}{m \cdot v} = \frac{h}{\sqrt{2 \cdot m \cdot K.E.}}$$

as K.E. is same $\Rightarrow \lambda \propto \frac{1}{\sqrt{m}}$
mass of electron = 9.1 × 10⁻³¹ kg
mass of proton = 1.67 × 10⁻²⁷ kg
mass of α -particle = 6.68 × 10⁻²⁷ kg
 $\Rightarrow \lambda_e > \lambda_p > \lambda_{\alpha}$

17. Which of the following is correct graph for conductometric titration between benzoic acid & NaOH ?

(d/l)

20. Which of the following is most easily deprotonated ?

- (2) Both Statement-I and Statement-II are incorrect.
- (3) Statement-I is correct but Statement-II is incorrect.
- (4) Statement-I is incorrect but Statement-II is correct.
- Ans. (1)

[Aromatic compound]

Sol. Both are correct

Unleashing Potential

24. Assertion (A): Benzene is more stable than hypothetical cyclohexatriene **Reason** (R): The delocalised π -electrons cloud is attracted more strongly by the nuclei of the carbon atoms than the electron cloud localised between two carbon atoms.

- (1) Both (A) and (R) are true but (R) is not the true explanation of (A)
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true and (R) is the true explanation of (A)

Ans. (4) [Hydrocarbon]

25. Match the column

- (P) Antifertility drugs (A) Norethindrone
- (Q) Anti histamines (B) Seldane
- (R) Tranquilizers (C) Meprobamate
- (S) Antibiotics (D) Penicillin
- (1) $P \rightarrow (A), Q \rightarrow (B), R \rightarrow (C), S \rightarrow (D)$
- (2) $P \rightarrow (A), Q \rightarrow (C), R \rightarrow (B), S \rightarrow (D)$
- (3) $P \rightarrow (D), Q \rightarrow (C), R \rightarrow (B), S \rightarrow (A)$
- (4) $P \rightarrow (A), Q \rightarrow (D), R \rightarrow (B), S \rightarrow (C)$

Ans. (1)

How many tripeptides can be formed from the amino acid valine and proline? 26. Inleat

8 Ans.

[Biomolecules]

[Chemistry in every day life]

otential

ADMISSIONS OPEN (Session 2023-24)

JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Test on Every

Scholarship up to 90%

Unleashing Potential

ahle

MAYANK MOTWANI Classroom

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 | Website : www.reliablekota.com | E-mail : info@reliablekota.com f reliablekota g reliablekota c reliableinstitutekota @ reliable_kota in reliablekota