JEE MAIN 2023 JAN ATTEMPT

PAPER-1 (B.Tech / B.E.)

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - CHEMISTRY

Accomplish your DREAM with Reliable FACULTY TEAM

TARGET JEE Adv. 2024
Not satisfied with your JEE Performance?

For Class XII Passed / Repeater Students

One Year Classroom Course for Complete

 JEE (Main+Adv) SyllabusSTARTING FROM :
15 \& 29 MARCH'23

CHEMISTRY

1. Sum of π-bonds in one molecule each of Peroxydisulphuric acid \& Pyrosulphuric acid is:

Ans. 8

Sol. Peroxydisulphuric acid

Pyrosulphuric acid

Sum $=4+4=8$
2.

1 mole of ideal gas undergoes above cyclic process.
Value of work done (in J) is : $(\ell \mathrm{n} 2=0.7)$
Ans. 608
Sol. $\quad \mathrm{W}=\mathrm{W}_{\mathrm{AB}}+\mathrm{W}_{\mathrm{BC}}+\mathrm{W}_{\mathrm{CA}}$

$$
\begin{aligned}
& =0-1(20-40)+\left[-20 \div \mathrm{n}\left(\frac{40}{20}\right)\right] \\
& =20-20 \ln 2
\end{aligned}
$$

$$
=20(1-0.7)
$$

$$
=6 \mathrm{~L}-\mathrm{atm}
$$

$$
=6 \times 101.3
$$

$$
=607.8 \mathrm{~J} \approx 608 \mathrm{~J}
$$

Uniesshing Potenilal
3.

pH of a solution containing 0.005 M anionic form of above acid $\left(\begin{array}{c}\mathrm{CH}_{3} \\ 1 \\ \mathrm{H}-\mathrm{C}_{3}-\mathrm{COO}^{-} \\ 1 \\ \mathrm{OH}\end{array}\right)$ is :
(Nearest integer)
Ans. 8
(Ionic Equilibrium)
Sol. Salt of WA \& SB

$$
\begin{aligned}
\mathrm{pH} & =\frac{1}{2}\left(\mathrm{pK}_{\mathrm{w}}+\mathrm{pK}_{\mathrm{a}}+\log \mathrm{C}\right) \\
& =\frac{1}{2}(14+5-3+\log 5) \\
& =8.35 \approx 8
\end{aligned}
$$

4. Which of the following statements are correct for given Andrew isotherm of CO_{2}

(i) Formation of liquid starts at point C .
(ii) From point B to C amount of liquid decreases.
(iii) Formation of liquid starts from point B.
(iv) At points $\mathrm{B} \& \mathrm{C}$, both liquid \& vapour coexist.
(1) i, ii
(2) ii, iii
(3) iii, iv
(4) i, iv

Ans. (3)
(Real gas)
Sol. (i) Formation of liquid ends at point C .
(ii) From B to C, amount of liquid increases.

Uniesshing Potennial
5. Which of the following are concentration terms.

Mole, Mass\%, Molality, Molarity, Mole fraction, ppm.
Ans. 5
(Mole Concept)
Sol. All other than mole.
6. Unipositive ion of an atom containing 55 protons contains how many s electrons?

Ans. 10
(Atomic Structure)
Sol. $\quad{ }_{55} \mathrm{Cs}^{+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6}$
Number of s-electrons $=2+2+2+2+2=10$
7. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is \qquad hybridised and \qquad .
(1) $d^{2} s p^{3}$, Diamagnetic
(2) $d^{2} s^{3}$, Paramagnetic
(3) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, Diamagnetic
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, Paramagnetic

Ans. 1
(Coordination Compounds)
Sol. $\quad \mathrm{Co}^{3+}\left(3 \mathrm{~d}^{6}\right)+\mathrm{SFL}(\mathrm{CN}=6)$
$\Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{222} \mathrm{e}_{\mathrm{g}}^{00} \Rightarrow \mathrm{~d}^{2} \mathrm{sp}^{3}$ and Diamagnetic
8. The metal which is extracted by oxidation and subsequent reduction from its ore is:
(1) Au
(2) Cu
(3) Fe
(4) Al

Ans. (1)
(Metallurgy)
Sol. $\mathrm{Au} \xrightarrow[\begin{array}{c}+\mathrm{O}_{2} \\ \text { (Oxidation) }\end{array}]{\mathrm{NaCN}}\left[\mathrm{Au}(\mathrm{CN})_{2}\right] \xrightarrow[\text { (Reduction) }]{\mathrm{Zn}} \mathrm{Au} \downarrow$
9. How many statement/statements is/are correct for physisorption?
(i) physisorption is highly specific in nature.
(ii) physisorption is monolayer in nature.
(iii) physisorption has zero activation energy
(iv) physisorption decreases with increasing temperature.
(v) physisorption has high $\Delta \mathrm{H}_{\text {Adsorption }}$

Ans. 2 (iii, iv)
Sol. (i) physisorption is less specific in nature.
(ii) physisorption is multimolecular layer
(iii) physisorption has low $\Delta \mathrm{H}_{\text {Adsorption }}$

Uniesshing Poteminal
10. An ideal solution containing $X_{A}=0.7$ has $\mathrm{VP}=350$ torr

Another ideal solution containing $X_{B}=0.2$ has $\mathrm{VP}=410$ torr $\mathrm{P}_{\mathrm{A}}^{0}=$? (nearest integer)

Ans. 314
(Solution \& Colligative Properties)
Sol. $\quad 0.7 \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+0.3 \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=350$
$\& 0.2 \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+0.8 \mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=410$
$\therefore \mathrm{P}_{\mathrm{A}}^{\mathrm{o}}=314$ torr
11. $\mathrm{H}_{2} \mathrm{O}_{2}$ behave like reducing agent in which of the following reactions :
(1) $\mathrm{Fe}^{+2}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}^{+3}+\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(4) $\mathrm{Mn}^{+2}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Ans. (3)
(p-Block (15-16 family))
Sol. $\quad \mathrm{H}_{2} \mathrm{O}_{2}$ reduces HOCl to Cl^{-}and itself gets oxidised to O_{2}.
12. $\quad \mathrm{AB}_{3}(\mathrm{~g})$ dissociates into gaseous products with following data:

$\mathbf{t}_{1 / 2}$	4 sec.	2 sec.	1 sec.	0.5 sec.
$\mathbf{P}_{\mathbf{0}}\left(\mathbf{A B}_{3}\right)$	50 torr	100 torr	200 torr	400 torr

Order of reaction is
Ans. 2
(Chemical Kinetics)
Sol. $\quad \mathrm{t}_{1 / 2} \propto \frac{1}{\mathrm{P}_{\mathrm{o}}} \Rightarrow \mathrm{II}$ order
13. Number of unpaired electron in highest occupied molecular orbital of following species is :

	N_{2}	$\mathrm{~N}_{2}{ }^{\oplus}$	O_{2}	$\mathrm{O}_{2}{ }^{\oplus}$
(1)	0	1	2	1
(2)	1	0	1	2
(3)	2	2	0	2
(4)	1	1	1	0

Ans. (1)
(Chemical Bonding)

Sol. $\quad \mathrm{N}_{2} \rightarrow \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right] \underset{\text { Номо }}{\sigma 2 \mathrm{p}_{\mathrm{z}}^{2}}$
$\mathrm{N}_{2}{ }^{\oplus} \rightarrow \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right] \underset{\text { номо }}{\mathrm{z}} \mathrm{p}^{1}$
$\mathrm{O}_{2} \rightarrow \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right] \underbrace{\left[\pi^{*} 2 \mathrm{p}_{\mathrm{x}}^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{1}\right]}_{\text {номо }}$
$\mathrm{O}_{2}{ }^{\oplus} \rightarrow \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2},\left[\pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}\right] \underbrace{\left[\pi^{*} 2 \mathrm{p}_{\mathrm{x}}^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{0}\right]}_{\text {НОМО }}$
14. Which is good oxidising agent?
(i) Sm^{+2}
(ii) Ce^{+2}
(iii) Ce^{+4}
(iv) Tb^{+4}
(1) Sm^{+2} only
(2) $\mathrm{Ce}^{4+}, \mathrm{Tb}^{4+}$
(3) Ce^{+4} only
(4) Ce^{2+} only

Ans. (2)

(f-Block)

Sol. $\mathrm{Ce}^{4+} \& \mathrm{~Tb}^{4+}$ are good oxidising agents (both get reduced to +3).
15. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ paper acidified with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ turns green when exposed to :
(1) SO_{2}
(2) SO_{3}
(3) CO_{2}
(4) $\mathrm{H}_{2} \mathrm{~S}$

Ans. (1)

(d-Block)

Sol. $\quad \mathrm{SO}_{2} \xrightarrow[\mathrm{H}^{+}]{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}} \underset{\text { (gren) }}{\mathrm{Cr}^{3+}}+\mathrm{SO}_{4}^{2-}$
16. α-particle, proton \& electron have same kinetic energy. Select correct order of their de-Broglie wavelength.
(1) $\lambda_{e}>\lambda_{p}>\lambda_{\alpha}$
(2) $\lambda_{\alpha}>\lambda_{e}>\lambda_{p}$
(3) $\lambda_{p}=\lambda_{\alpha}=\lambda_{e}$
(4) $\lambda_{p}>\lambda_{e}>\lambda_{\alpha}$

Ans. (1)
(Atomic Structure)
Sol. $\quad \lambda=\frac{h}{\mathrm{~m} \cdot \mathrm{v}}=\frac{\mathrm{h}}{\sqrt{2 \cdot \mathrm{~m} \cdot \mathrm{~K} . \mathrm{E}}}$
as K.E. is same $\Rightarrow \lambda \propto \frac{1}{\sqrt{\mathrm{~m}}}$
mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$
mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$
mass of α-particle $=6.68 \times 10^{-27} \mathrm{~kg}$
$\Rightarrow \lambda_{\mathrm{e}}>\lambda_{\mathrm{p}}>\lambda_{\alpha}$
_Institutt
17. Which of the following is correct graph for conductometric titration between benzoic acid \& NaOH ?
(1)

(2)

(3)

(4)

Ans. (2)
(Electrochemistry)
18. $\mathrm{S}_{1}: \mathrm{Be}^{+2}$ has higher SRP than other alkaline earth metals.
$\mathrm{S}_{2}: \mathrm{Be}^{+2}$ has higher hydration energy and greater $\Delta_{\mathrm{a}} \mathrm{H}$ (atomisation enthalpy) than other alkaline earth metals.
(1) Both $S_{1} \& S_{2}$ are true
(2) S_{1} is true ; S_{2} is false
(3) S_{1} is false; S_{2} is true
(4) Both $S_{1} \& S_{2}$ are false

Ans. (1)
Sol. Be has least -ve SRP value because of high $\Delta_{\mathrm{a}} \mathrm{H}$ (atomisation enthalpy), inspite of maximum hydration energy.
19.

[Hydrocarbons]
Ans. (3)

Sol.

20. Which of the following is most easily deprotonated?
(a)

(b)

(c)

(d)

(1) a
(2) b
(3) c
(4) d

Ans. (3)
[GOC-2]
21.

A \& B are respectively
(1)

(2)

(3)

(4)

Ans. (1)
[Hydrocarbons]
22. Average human being requires nearly \qquad times more air than the food
(1) 12-15
(2) 100
(3) 40-50
(4) 75

Ans. (1)
23. Statement-I : Aniline and other aryl amines are usually colourless

Statement-II : Aniline and other arylamines get coloured on storage due to atmospheric oxidation
(1) Both Statement-I and Statement-II are correct.
(2) Both Statement-I and Statement-II are incorrect.
(3) Statement-I is correct but Statement-II is incorrect.
(4) Statement-I is incorrect but Statement-II is correct.

Ans. (1)
[Aromatic compound]
Sol. Both are correct
24. Assertion (A): Benzene is more stable than hypothetical cyclohexatriene

Reason (R): The delocalised π-electrons cloud is attracted more strongly by the nuclei of the carbon atoms than the electron cloud localised between two carbon atoms.
(1) Both (A) and (R) are true but (R) is not the true explanation of (A)
(2) (A) is false but (R) is true.
(3) (A) is true but (R) is false
(4) Both (A) and (R) are true and (R) is the true explanation of (A)

Ans. (4)
[Hydrocarbon]
25. Match the column
(P) Antifertility drugs
(A) Norethindrone
(Q) Anti histamines
(B) Seldane
(R) Tranquilizers
(C) Meprobamate
(S) Antibiotics
(D) Penicillin
(1) $\mathrm{P} \rightarrow$ (A), $\mathrm{Q} \rightarrow$ (B), $\mathrm{R} \rightarrow$ (C), $\mathrm{S} \rightarrow$ (D)
(2) $\mathrm{P} \rightarrow(\mathrm{A}), \mathrm{Q} \rightarrow(\mathrm{C}), \mathrm{R} \rightarrow(\mathrm{B}), \mathrm{S} \rightarrow$ (D)
(3) $\mathrm{P} \rightarrow(\mathrm{D}), \mathrm{Q} \rightarrow(\mathrm{C}), \mathrm{R} \rightarrow$ (B), $\mathrm{S} \rightarrow(\mathrm{A})$
(4) $\mathrm{P} \rightarrow(\mathrm{A}), \mathrm{Q} \rightarrow(\mathrm{D}), \mathrm{R} \rightarrow(\mathrm{B}), \mathrm{S} \rightarrow(\mathrm{C})$

Ans. (1)
[Chemistry in every day life]
26. How many tripeptides can be formed from the amino acid valine and proline?

Ans. 8
[Biomolecules]

\#\#l|Tkipooritaiyyari

ADMISSIONS OPEN

(Session 2023-24)
JEE (Main + Adv.) I JEE (Main) Junior Division (VI to X)

Appear in ONLINE Reliable National Entrance Test (R-NET)

Scholarship up to $\mathbf{9 0 \%}$

Test on Every SUNDAY

RELIABLE INSTITUTE : A-10, Road No.1, IPIA, Kota-324005 (Rajasthan), India Tel. : 0744-3535544, 2665544 I Website : www.reliablekota.com I E-mail : info@reliablekota.com f reliablekota ○ reliablekota © reliableinstitutekota © reliable_kota in reliablekota

